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1. Geometric Representation of Graphs

1.1. Unit Distance Representation of Graphs. We may want to map each node of a graph G = (V,E)
to a point in d-dimensional real Euclidean space such that for every edge in G, the distance in this d-
dimensional space is always equal to a unit distance. I.e., ‖v(i) − v(j)‖2 = 1,∀ {i, j} ∈ E. Petersen graph
can be drawn in a plane and have the unit distance representation. We may interest in �nding the answer
for questions like for any given d, what is the radius of the smallest Euclidean ball containing such unit
distance representation of graph G. In engineering, we may also be given the prescribed distances wij ∈ RS+
for S ⊆ E and the task is to �nd the smalled d such that those prescribed distance requirements can be
satis�ed. We have the following nice theorem stating the property that a special SDP problem formulation
can give us the radius of the smallest Euclidean ball containing unit distance representation of G in R|V |.

Theorem 1.1. Suppose graph G = (V,E) is given. The optimal solution for the following SDP exists, and
it is attained with the optimal value equal to the square of the radius of the smallest Euclidean ball containing
the unit distance representation of G.

t(G) := min t

st. diag(X)− tē ≤ 0
Xii − 2Xij + Xjj = 1 ∀ {i, j} ∈ E

X ∈ Σ|V |+

Figure 1.1. Petersen Graph and Hypercube Q4 in its unit distance representation form
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Proof. We can check the dual problem of the above. Let us de�ne

A{i,j} := eie
T
i + eje

T
j −

(
eie

T
j + eje

T
i

)
=



0 · · · · · · · · · 0
... 1 0 −1

...
... 0 · · · 0

...
... −1 0 1

...
0 · · · · · · · · · 0


|V |×|V |

,∀ {i, j} ∈ E.

The dual problem can be obtained by observing the Lagrangian multipliers of the original (P ) problem, and
apply the �rst order necessary optimality conditions if we are unsure about what the exact form it should

look like. We will associate KKT multiplier zij for each unit distance constraint, y ∈ R|V |− for the inequality
constraint for the radius of the Euclidean ball. The Lagrangian of (P ) is

L(X, t, zi,j ,−y) = t−
∑

{i,j}∈E

zij(Xii − 2Xij + Xjj − 1)− (−y)T (tē− diag(X)).

Therefore ∇LX(X, t, zij ,−y) = 0 implies 0|V |×|V | =
∑

{i,j}∈E zijA
{i,j} + Diag(y). ∇Lt(X, t, zij ,−y) = 0

indicates 1 = −ēT y (free variable t indicates equality constraint). ∇Lzij
= 0 and ∇L−y = 0 can show

us Xii − 2Xij + Xjj = 1 and tē − diag(X) − S = 0 (if add slack variable S) as expected. By the KKT
conditions ,we know KKT multipliers−y for inequality constraints must be nonnegative thus we have y ≤ 0
(or ≤ constraint corresponds to non-positive variable y). By the KKT complementarity condition, we can
derive (−y)T (tē − diag(X) = S) = 0 since it will guarantee that the Lagrangian of (P ) will have the
same optimal objective value as the original problem (P ). Therefore for the Lagrangian dual, L(zij ,−y) =∑

{i,j}∈E zij(similar to LP ) , and its full dual can be formulated as

max
∑

{i,j}∈E zij

st. Diag(y) +
∑

{i,j}∈E zijA
{i,j} � 0 ∀ {i, j} ∈ E

−ēT y = 1
y ≤ 0

The �rst inequality follows from the rule �nonnegative variables X corresponds to � constraint� and the
coe�cient for matrix variable X in the objective function is 0|V |×|V |. If we add slack matrix variable

S ∈ Σ|V |+ ,the inequality constraint can be changed to its equality form. In general, the dual constraints
can be derived from the Lagrangian of the primal by taking �rst derivative on it to get the exact form.
Pay attention to that dual SDP has Slater point ȳ = − 1

|V | , z̄ij = 0, and primal SDP has Slater point

X̄ = 1
2I, t = 1

2 + ε for any ε > 0. By the corollary of the strong duality theorem, both the primal and dual
SDP problem have optimal solution and the optimal objective values coincide. Assume we already have a
unit distance representation of G with the smallest radius r := max

{
‖v(i)‖2

}
where

{
v(i) ∈ R|V | : i ∈ V

}
is

the representation itself. We can de�ne BT :=
[
v(1), · · · v(|V |)] then set X̄ := BBT . It is obvious X̄ � 0 and

X̄ij =
〈
v(i), v(j)

〉
∀i, j. Therefore, diag(X̄) ≤ r2ē and X̄ii − 2X̄ij + X̄jj = 1. So (X̄, r2) is feasible in the

primal SDP problem with the objective value r2. Similarly, let (X̄, t̄) be the optimal solution of the primal

SDP, we can always Cholesky decompose X̄ = BBT . Let v(i) denote the i-th column of BT , we can claim{
v(i) : i ∈ V

}
form a unit distance representation of G, and ‖v(i)‖2 ≤

√
t̄. Thus completes the proof of above

theorem. That is, the optimal value of the SDP is precisely the square-root of the smallest Euclidean ball in
R|V | containing a unit distance representation of G. �
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Figure 1.2. Koebe-Andreev-Thurston Circle Packing Theorem

1.2. Hypersphere Representation of Graphs. It is very similar to unit distance representation of graph
except that we require every node lies exactly on the hypersphere. The problem is given by

t(G) := min t

st. diag(X) = tē

Xii − 2Xij + Xjj = 1 ∀ {i, j} ∈ E

X ∈ Σ|V |+

and we also are provided with the following theorem.

Theorem 1.2. Let G = (V,E) be given. The optimal solution for above SDP problem exists, and the
optimal value is attained with the optimal value equal to the square of the radius of the smallest Euclidean
ball containing a smallest hypersphere representation of G.

Koebe-Andreev-Thurston's Circle Packing Theorem states that every planar graph can be represented in
such a way that its nodes correspond to disjoint disks which touch if and only if the corresponding nodes
are adjacent. Actually there exists a corresponding representation of the dual graph G∗ by disks such that
intersecting edges of G and G∗ are represented by disks whose boundaries intersect orthogonally as shown
in the following �gure.

1.3. Orthonormal Representations of Graphs.
{
u(i) ∈ Rd : i ∈ V

}
is called an orthonormal represen-

tation of graph if ‖u(i)‖2 = 1 for ∀i ∈ V and
〈
u(i), u(j)

〉
= 0 for ∀ {i, j} ∈ Ē. We will �nd there is

some correspondence between orthonormal representation of G and hypersphere representation of Ḡ. I.e.,
Suppose

{
v(i) ∈ Rd : i ∈ V

}
is the smallest hypersphere representation of Ḡ with radius t. Then we have

‖v(i)‖22 = t, ∀i ∈ V and
〈
v(i), v(j)

〉
= ‖v(i)‖22+‖v

(j)‖22−‖v
(i)−v(j)‖22

2 = 2t−1
2 ,∀ {i, j} ∈ Ē. Since X̄ := 1

2I, t̄ := 1
2 is

a feasible point in the SDP formulation of hypersphere representation of G, we can claim t ≤ 1
2 . We can give

an orthonormal representation of G in lifted space Rd+1 based on
{
v(i) ∈ Rd : i ∈ V

}
. Assume the zeroth co-

ordinate is set to
√

1
2 − t and we embed the original graph G in the hyperplane

{
x ∈ Rd+1 : x0 =

√
1
2 − t

}
.
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Figure 1.3. Stable Set Polytope

Let u(i) :=
√

2

[ √
1
2 − t

v(i)

]
,∀i ∈ V , then we have ‖u(i)‖22 = 2( 1

2−t+t) = 1 and
〈
u(i), u(j)

〉
= 2( 1

2−t+ 2t−1
2 ) =

0,∀ {i, j} ∈ Ē as desired. Similarly, every orthonormal representation of Ḡ gives a hypersphere represen-

tation of G as well by letting
{
u(i) ∈ Rd+1 : i ∈ V

}
and de�ning v(i) := 1√

2
u(i),∀i ∈ V . This is because

‖v(i) − v(j)‖22 = 1
2‖u

(i)‖22 + 1
2‖u

(j)‖22 = 1 and
〈
v(i), v(j)

〉
= 0,∀ {i, j} ∈ ¯̄E = E. Therefore

{
v(i) : i ∈ V

}
is a

hypersphere representation of G contained in B(0,
√

1
2 ).

Orthonormal representation of graphs have a deep connection to stable set problem. A subset S ⊆ V is a
stable set of G if for every {i, j} ∈ E at most one of i, j is in S. The stability number of G is the cardinality of
the largest cardinality stable set in G and is denoted by α(G) := max {|S| : S is a stable set inG}. However,
computing α(G) is an NP-hard problem. Moreover, it is even hard to approximate α(G) in polynomial
time, that is no constant ratio, polynomial time approximation algorithm exists unless P = NP. We can

de�ne a stable set polytope by taking convex hull on all incidence vectors x ∈ {0, 1}|V | of each stable set.

STAB(G) := conv
{

x ∈ {0, 1}|V | : x is an incidence vector of a stable set in G
}

.

We can de�ne a fractional stable set polytope as

FRAC(G) :=
{

x ∈ [0, 1]|V | : xi + xj ≤ 1,∀ {i, j} ∈ E
}
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Figure 1.4. Fractional Stable Set Polytope (STAB(G) ⊆ FRAC(G))

and then we can represent stable set polytope as STAB(G) = conv
(
FRAC(G) ∩ {0, 1}|V |

)
. For any clique

C in G, the clique inequality says that ∑
i∈C

xi ≤ 1.

We can de�ne a clique matrix Aclq(G) whose rows are the incidence vectors of cliques in G. Thus Aclq is a
0, 1 matrix with |V | columns and as many rows as the number of cliques in G including singletons and edges.
Then we can have the clique polytope of G as given by

CLQ(G) :=
{

x ∈ R|V |+ : Aclq(G)x ≤ ē
}

.

We now turn our focus to an orthonormal representation of G by
{
u(i) ∈ Rd : i ∈ V

}
. Then for any c ∈ Rd

such that ‖C‖2 = 1, the inequality ∑
i∈V

(
cT u(i)

)2

xi ≤ 1

is called an orthonormal representation constraint. Based on above constraint, we can de�ne a compact,
convex set with nonempty interior theta body of G as

TH(G) :=
{

x ∈ R|V |+ : x satisfies all orthonormal representation constraints for G
}

.

Clearly 0 ∈ TH(G) and ei ∈ TH(G) (since
∑

i∈V

(
cT u(i)

)2
xi =

(
cT u(i)

)2 ≤ ‖c‖22 · ‖u(i)‖22 = 1 ) thus it is
not empty. We have the following theorem indicating the relationships between stable set polytope, theta
body polytope, clique polytope and fractional stable set polytope.

Theorem 1.3. For every graph G = (V,E), we have STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G).

Proof. We prove STAB(G) ⊆ TH(G) �rst. Suppose S ⊆ V is a stable set in G. Let
{
u(i) : i ∈ V

}
be

an arbitrary orthonormal representation of G and let c be a vector such that ‖c‖2 = 1.Let UT
S be an

|S| × |V | matrix with columns u(i). Then
∑

i∈S
(
cT u(i)

)2
= ‖USc‖22 ≤ ‖c‖22 = 1 thus for every stable

set in G its incidence vector x satis�es
∑

i∈V

(
cT u(i)

)2
xi ≤ 1 for every orthonormal representation of G
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and every unit vector c. Therefore theta body of G is a relaxation of stable set polytope. Secondly, let's
prove TH(G) ⊆ CLQ(G). Let C ⊆ V be a clique in G. We can always have a set of orthonormal vectors{
u(i) : i ∈ V \C

}
∪{c} and set u(i) := c,∀i ∈ C. Notice that

{
u(i) : i ∈ V

}
forms an orthonormal representation

of G and the corresponding orthonormal representation constraint is given by∑
i∈V

(
cT u(i)

)2

xi ≤ 1 ⇔
∑
i∈C

(
cT c
)2

xi ≤ 1 ⇔
∑
i∈C

xi ≤ 1

Thus every clique inequality indeed is a direct result of an orthonormal representation constraint. So we
have TH(G) ⊆ CLQ(G). CLQ(G) ⊆ FRAC(G) is obvious since FRAC(G) is de�ned by the non-negativity
constraints and clique constraints with only one or two nodes. �

We can approximate any linear function over FRAC(G) in polynomial time while the relaxation is usually
very week. It is NP-hard to �nd the largest clique in a graph and linear optimization over CLQ(G) is also
NP-hard. The next theorem shows optimizing over TH(G) is tractable.

Suppose we are given a graph G = (V,E) and a weight vector w ∈ R|V |+ . We have the following de�nition

θ(G, w) := max
{
wT x : x ∈ TH(G)

}
and W ∈ Σ|V | is de�ned component-wise as Wij := √

wiwj .

Theorem 1.4. Let G = (V,E) be a given graph with a weight weight vector w ∈ R|V |+ . Then TFAE:
(i) θ(G, w)

(ii) minall orth. representations maxi∈V

{
wi

(cT u(i))2

}
(iii) min

{
η : diag(S) = 0; Sij = 0,∀ {i, j} ∈ Ē; ηI − S � W

}
(iv) max {〈W,X〉 : Xij = 0,∀ {i, j} ∈ E; 〈I, X〉 = 1; X � 0}

Proof. First let's assume w 6= 0 otherwise the proof is trivial since all optimal values are equal to 0. First,
let's prove (i)⇒(ii). We know that TH(G) is nonempty and compact, and wT x is continuous over TH(G)
thus maximizer ∃x̄ ∈ TH(G) such that wT x̄ = θ(G, w). Let

{
ū(i) : i ∈ V

}
be an orthonormal representation

of G and c̄ be the unit vector to attain the min-max in (ii), for every i, c̄T ū(i) 6= 0. We will establish the
following fact

(i) = θ(G, w) =
∑
i∈V

wix̄i =
∑ wi(

c̄T ū(i)
)2 (c̄T ū(i)

)2

x̄i

≤

(
max
i∈V

{
wi(

c̄T ū(i)
)2
})∑

i∈V

(
c̄T ū(i)

)2

x̄i︸ ︷︷ ︸
≤1

≤ max
i∈V

{
wi(

c̄T ū(i)
)2
}

= (ii)

Secondly, we should notice that (iii) and (iv) are primal (iv)-dual (iii) SDP's. Notice that X̄ := 1
|V |I and

S̄ := 0, η̄ := η1(W ) + 1for su�cient large η1yield Slater point for primal and dual SDP, respectively. By the
corollary of strong duality theorem, (iii)=(iv).

Thirdly, we prove (ii)≤(iii). Suppose S̄ and η̄ yield an optimal solution for (D) SDP problem. That is,
η̄ = (iii). Then we have

η̄ ≥︸︷︷︸
weak duality

〈
W, X̄

〉
=

1
|V |

ēT w︸︷︷︸
>0

> 0.
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Let Y ∈ R|V |×|V | be the Cholesky decomposition matrix of Y Y T = η̄I − S̄ −W � 0. Let v(i) denote the ith
column of Y T as before. Then we get〈

v(i), v(i)
〉

=
(
η̄I − S̄ −W

)
ii

= η̄ − wi,∀i ∈ V

and 〈
v(i), v(j)

〉
= −√wiwj ,∀ {i, j} ∈ Ē.

We can claim Y is not full rank. Otherwise, we could end up with η̄I − S̄ −W � 0 and there exists a small
enough ε > 0 such that the pair S̄, (η̄−ε) are still feasible in D which contradicts η̄ is the optimal value of (D).
Since rank(Y ) < |V |, there must exist c ∈ RV such that ‖c‖2 = 1 and Y c = 0(i.e.,

〈
c, v(i)

〉
= 0,∀i ∈ V ). We

can further de�ne u(i) := 1√
η̄

(√
wic + v(i)

)
,∀i ∈ V. It is clear ‖u(i)‖22 = 1

η̄ (wi + η̄ − wi) = 1 for every i ∈ V

and
〈
u(i), u(j)

〉
= 1

η̄

(√
wiwj −

√
wiwj

)
= 0 for ∀ {i, j} ∈ Ē. Therefore

{
u(i) : i ∈ V

}
gives an orthonormal

representation of G. Thus

(ii) ≤ max
i∈V,wi>0

{
wi(

cT u(i)
)2
}

=
wi
wi

η̄

= η̄ = (iii).

Finally let's prove (iv) < (i). Let X∗ be an optimal solution of (P ). Then there exists Y ∈ R|V |×|V | such that

Y Y T = X∗. Let y(i) denote the ith column of Y T as before and let u(i) := y(i)

‖y(i)‖2
,∀i ∈ V such that y(i) 6= 0.

For the remaining i ∈ V such that y(i) = 0, de�ne {u(i)}as an orthonormal basis for span
{
u(i) : y(i) 6= 0

}⊥
.

Now
{
u(i) : i ∈ V

}
is an orthonormal representation of Ḡ (

〈
u(i), u(j)

〉
= 0,∀ {i, j} ∈ E since

〈
y(i), y(j)

〉
=

0,∀ (i, j) ∈ E). We de�ne c := 1√
〈W,X∗〉

Y T


√

w1√
w2

...√
w|V |

then

‖c‖22 =
1

〈W,X∗〉
[ √

w1
√

w2 · · · √
w|V |

]
Y Y T︸ ︷︷ ︸
=X∗


√

w1√
w2

...√
w|V |

 =
〈W,X∗〉
〈W,X∗〉

= 1.

De�ne UT :=
[

u(1) u(2) · · · u(|V |) ]and we have the following two lemmas to complete the proof.
Lemma 1: Uc� Uc ∈ TH(G).
To prove this lemma, we simply show the vector Uc�Uc satis�es all orthonormal representation constraints

for graph G. Let
{
v(i) : i ∈ V

}
be an arbitrary orthonormal representation of G and d be an arbitrary unit

vector. We have the following two facts
〈
cdT , cdT

〉
=
(
cT c
) (

dT d
)

= 1 and〈
u(i)

(
v(i)
)T

, u(j)
(
v(j)
)T
〉

=
〈
u(i), u(j)

〉〈
v(i), v(j)

〉
=
{

1 i = j
0 i 6= j

Thus
∑

i∈V

(
dT v(i)

)2 (
cT u(i)

)2
=
∑

i∈V

(〈
cdT , u(i)

(
v(i)
)T〉) ≤ 〈cdT , cdT

〉
= 1.

Lemma 2: With the above de�nitions, we have

〈W,X∗〉 =

[∑
i∈V

√
wi‖y(i)‖2

(
cT u(i)

)]2
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To prove lemma 2, we observe that

〈W,X∗〉 ≤

(∑
i∈V

‖y(i)‖22

)
︸ ︷︷ ︸

=tr(X∗)=〈I,X∗〉=1

[∑
i∈V

wi

(
cT u(i)

)2
]

=
∑
i∈V

wi

(
cT u(i)

)2

≤︸︷︷︸
Uc�Uc∈TH(G)

θ(G, w)

�

A graph is called perfect if for every node induced subgraph H of G, the clique number of H and the
chromatic number of H coincide: ω(H) = χ(H). An odd-hole is a chord-less odd cycle of length at least 5.
An odd-anti-hole is the complement of an odd-hole.

Theorem 1.5. For every graph G = (V,E), [TH(G)]∗ ∩R|V |+ = TH(Ḡ). That is , the polar of TH(G) when
restricted to nonnegative orthant, coincides with the TH(·) set of the complement of G.

We also have the equivalent representation of TH(G) as the projection of the feasible region of a tractable
SDP problem:

Theorem 1.6. Let G = (V,E) be an undirected graph. Then

TH(G) =
{

x ∈ R|V | :
(

1
x

)
= Y e0; Yij = 0,∀ {i, j} ∈ E; Y e0 = diag(Y ); Y ∈ Σ{0}∪V

+

}
Proof. First let's prove x̄ ∈ TH(G) implies there exist c ∈ R|V | with ‖c‖2 = 1 and an orthonormal rep-

resentation of Ḡ ,
{
u(i) : i ∈ V

}
such that x̄i =

(
cT u(i)

)2
for every i ∈ V . Then for i, j ∈ V consider

Yij :=
√

x̄ix̄j

〈
u(i), u(j)

〉
. �

We also have the nice theorem about node-symmetric graph.

Theorem 1.7. Let G = (V,E) be an undirected graph. We say that G is node-symmetric(vertex-transitive)
if the automorphism group of G acts transitively on V. If G is such a node-symmetric graph, then θ(G)θ(Ḡ) =
|V | where θ(G) := θ(G, ē).

The well known sandwich theorem states that:

Theorem 1.8. For every graph G

θ(G) = max
〈
ēēT , X

〉
= min t

Xij = 0,∀ {i, j} ∈ E diag(Z) = (t− 1)ē
〈I,X〉 = 1 Zij = −1,∀ {i, j} ∈ Ē

X � 0 Z � 0

Moreover,
α(G) ≤ Θ(G) ≤ θ(G) ≤ χ(Ḡ)

for all graphs G where Θ(G) := limk→∞
[
α(Gk)

]1/k
.The products of undirected graphs G = (V,E),H =

(W,F ) is de�ned as
G⊗H := (V (G⊗H), E(G⊗H))

where
V (G⊗H) := V ×W

and

E(G⊗H) := {{{i, u} , {j, v}} : ({i, j} ∈ E ∩ {u, v} ∈ F ) ∪ ({i, j} ∈ E ∩ u = v) ∪ (i = j ∩ {u, v} ∈ F )} .
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2. Lift and Project Method

For combinatorial optimization, we probably face the problem like maximizing or minimizing cT x over

F ⊆ {0, 1}d
where c ∈ Rd. The integer-valued feasible region F can also be described in terms of a

polytope P ⊆ [0, 1]d such that F = P ∩ {0, 1}d
. We are interested in doing optimization over the convex

hull of F with the hope to get a good result after this type of relaxation. Let PI denote the relaxed

feasible region PI := conv(F ) = conv
(
P ∩ {0, 1}d

)
as described above. The original integer programming

problem is converted to solving a linear programming problem. In some cases, we may have a compact
representation of exponentially many inequality constraints in a lifted space with polynomially number of
inequalities. The bene�t we can get from lies in that we could have more options if we take certain liftings
to Σd to get a tight SDP relaxations for some very hard problems. The lift and project method that
will be introduced in this section starts from P and recursively generates tighter and tighter relaxation
of PI . Moreover, this relaxation process will converge to PI . The name for this method comes from the
procedure to embed the original feasible region to a higher dimension hyperplane then project back onto

Rd. Let Q := cone
{

x ∈ Rd+1 : x ∈ {0, 1}d+1
, x0 = 1

}
and K ⊂ Q denote a polyhedral cone obtained from

a polytope P ⊆ [0, 1]d via homogenization using a new variable x0. That is, suppose we have P de�ned

as P :=
{
x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē

}
, then we get K :=

{[
x0

x

]
∈ Rd+1 : Ax ≤ x0b, 0 ≤ x ≤ x0ē

}
. Notice

that we embed P x0-times larger in every hyperplane in Rd+1 with the zeroth coordinate equal to x0 since K
is a conic representation of P . Similarly, let K ∈ Rd+1 be the convex cone as above and the element of K be

denoted as y =
[

y0 y1 · · · yd

]T =:
[

x0

x

]
where x ∈ Rd such that

{
x ∈ Rd :

[
1
x

]
∈ K

}
⊆ [0, 1]d.

Thus KI is also a homogenization of PI .

2.1. Lovasz-Schrijver Procedure. We have a SDP representation of theta body of G: Let G = (V,E) be
an undirected graph, then

TH(G) =
{

x ∈ R|V | :
(

1
x

)
= Y e0; Yij = 0,∀ {i, j} ∈ E; Y e0 = diag(Y ); Y ∈ Σ{0}∪V

+

}
The constraint Yij = 0,∀ {i, j} ∈ E is not quite general thus we can replace this constraint with a more

general geometric object such as FRAC(G) 's conic form in [0, 1]{0}∪V
. I.e.,

Y ei ∈ cone(FRAC(G)) :=
{[

x0

x

]
∈ R{0}∪V : xi + xj ≤ x0,∀ {i, j} ∈ E, 0 ≤ x ≤ x0ē

}
We may also strengthen our relaxation by adding Y (e0 − ei) ∈ cone(FRAC(G)) since when rank(Y ) = 1,
i.e.,

x ∈ P ∩ {0, 1}|V | , Y =
[

1
x

] [
1 xT

]
,

Y e0 =
[

1
x

]
, Y (e0−ei) =

[
1− xi

x− xix

]
= (1−xi)

[
1
x

]
both belong to the cone generated by the fractional

stable set polytope. Let P,K be as above, we will de�ne three operators M+(K), M(K) and M0(K) (they
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are all convex cones) and corresponding N+(K), N(K) and N0(K) respectively.

M+(K)︸ ︷︷ ︸
|
T

:=
{
Y ∈ Σ1+d

+ : diag(Y ) = Y e0; Y ei, Y (e0 − ei) ∈ K,∀i ∈ {1, 2, · · · d}
}

M(K)︸ ︷︷ ︸
|
T

:=
{
Y ∈ Σ1+d : diag(Y ) = Y e0; Y ei, Y (e0 − ei) ∈ K,∀i ∈ {1, 2, · · · d}

}
M0(K) :=

{
Y ∈ R(1+d)×(1+d) : diag(Y ) = Y e0 = Y T e0; Y ei, Y (e0 − ei) ∈ K,∀i ∈ {1, 2, · · · d}

}
and

N+(K) := {Y e0 : Y ∈ M+(K)}
N(K) := {Y e0 : Y ∈ M(K)}

N0(K) := {Y e0 : Y ∈ M0(K)} .

We have the following lemma saying the relationships between K,KI , N+(K), N(K) and N0(K).

Lemma 2.1. Let K,KI be as above, then KI ⊆ N+(K) ⊆ N(K) ⊆ N0(K) ⊆ K
Proof. Firstly, let's prove N0(K) ⊆ K. Let ȳ ∈ N0(K), by the de�nition of N0(K), there exists Ȳ ∈ M0(K)
such that Ȳ e0 = ȳ. Notice that Ȳ e0 = Ȳ (e0 − ei)︸ ︷︷ ︸

∈K

+ Ȳ ei︸︷︷︸
∈K

∈ K. Secondly, let's prove KI ⊆ N+(K). Let

ȳ ∈ KI such that ȳ ∈ {0, 1}1+d
. If ȳ0 = 0, then ȳ = 0 and Ȳ := 0 shows ȳ ∈ N+(K). Otherwise we may

assume ȳ0 = 1 without loss of generality. Let Ȳ := ȳȳTwhere ȳ :=


1
x1

...
xd

 , then Ȳ =
[

1 xT

x xxT

]
, x ∈ F.

Whence diag(Ȳ ) =


1
x2

1

x2
2
...

x2
d

 =


1
x1

x2

...
xd

 = Ȳ e0 and Ȳ ei = xi︸︷︷︸
≥0

[
1
x

]
︸ ︷︷ ︸
∈KI

∈ K, Ȳ (e0 − ei) = (1− xi)︸ ︷︷ ︸
≥0

[
1
x

]
︸ ︷︷ ︸
∈KI

∈ K

for ∀i ∈ {1, · · · d} . Ȳ = ȳȳT � 0 thus Ȳ ∈ M+(K) and Ȳ e0 = ȳ ∈ N+(K). �

Lemma 2.2. Let P, PI ,K,KI be as above, then

N0(K) ⊆
(
K ∩

{
y ∈ Rd+1 : yi = 0

})
+
(
K ∩

{
y ∈ Rd+1 : yi = y0

})
,∀i ∈ {1, 2 · · · d} .

Also
N0(P ) ⊆ conv

{(
P ∩

{
x ∈ Rd : xi = 0

})
∪
(
P ∩

{
x ∈ Rd : xi = 1

})}
,∀i ∈ {1, 2 · · · d} .

Proof. Let ȳ ∈ N0(K), then ∃Ȳ ∈ M0(K) such that Ȳ e0 = ȳ and

ȳ = Ȳ e0 = Ȳ (e0 − ei)︸ ︷︷ ︸
∈K∩{y∈Rd+1:yi=0}

+ Ȳ ei︸︷︷︸
∈K∩{y∈Rd+1:yi=y0}

as required. With above lemma, we immediately get

N+(P ) ⊆ N(P ) ⊆ N0(P ) ⊆
d⋂

i=1

conv
[(

P ∩
{
x ∈ Rd : xi = 0

})
∪
(
P ∩

{
x ∈ Rd : xi = 1

})]
. �



ADVANCED STUDY ON SDP APPLICATIONS 11

Figure 2.1. N0-Operator to get PI

Theorem 2.3. Let P be as above. Then

P ⊇ N0(P ) ⊇ N2
0 (P ) ⊇ · · · · · · ⊇ Nd

0 (P ) = PI .

Similarly for N as well as N+.

We now do an example to see the lift-and-project procedures will always terminate with the convex hull
PI in at most d steps.

2.2. Balas-Ceria-Cornuejols Procedure. We have the main observation N0(P ) ⊆ conv
{(

P ∩
{
x ∈ Rd : xi = 0

})
∪
(
P ∩

{
x ∈ Rd : xi = 1

})}
,∀i ∈

{1, 2 · · · d} thus we can de�ne a weaker operator

N(j)(P ) := conv
{(

P ∩
{
x ∈ Rd : xj = 0

})
∪
(
P ∩

{
x ∈ Rd : xj = 1

})}
,∀j ∈ {1, 2 · · · d} .

We can also de�ne J := {j1, j2, · · · jk} ⊆ {1, 2, · · · d}and denote N(J) := N(jk)

(
Njk−1

(
· · · · · ·N(j1) (P ) · · · · · ·

))
.

It is easy to show
N(J)(P ) = conv (P ∩ {xj ∈ {0, 1} ,∀j ∈ J}) .

Let P be as above then N({1,2,······d})(P ) = PI . This procedure is called Balas-Ceria-Cornuejols Procedure.

2.3. Sherali-Adams (Reformulation-Linearization) Procedure.


